杨桢-复旦大学智能医学研究院
师资力量

杨桢

青年副研究员

本人2011年毕业于复旦大学生物信息学专业,获博士学位,并从事博士后研究。后于2014年加入中国科学院计算生物学研究所,从事肿瘤表观遗传方向研究。2018年起加入复旦大学任青年副研究员。目前主要从事肿瘤多组学领域研究。研究方向包括DNA甲基化相关的表观遗传调控,非编码RNA调控网络构建,微生物宏基因组学,以及癌症多组学数据整合挖掘等。目前在JAMA oncology, Nature Communications, Genome Biology, Nucleic Acids Research, EBioMedicine, Trends in Genetics,BMC Genomic等杂志发表论文20余篇。曾担任中国科学院青年创新促进会会员,获赛诺菲—中国科学院上海生命科学研究院优秀青年人才奖励基金,国家自然科学基金重大研究计划等多项资助。

教育经历

2000.9-2004.7山西大学
生命科学学院生物科学专业 理学学士学位
2004.9-2007.7山西大学
生物技术研究所 生物化学与分子生物学

理学硕士学位

2008.9-2011.7 复旦大学
生命科学学院生物信息学专业 理学博士学位

工作经历

2018.10-至今   

复旦大学智能医学研究院/附属浦东医院青年副研究员
2015.12-2018.10 中国科学院上海生命科学研究院副研究员
2014.1-2015.12中国科学院上海生命科学研究院助理研究员
2012.3-2014.1复旦大学生物医学研究院 博士后
2011.9-2012.2中国医学科学院基础医学研究所科研助理
2007.4-2008.8中国科学院计算技术研究所科研助理

主持项目

中国博士后科学基金第53批面上资助(ID2013M530178,一等,8.0万元)

国家自然科学基金青年基金项目: 基于转录组水平的microRNA对外界环境扰动拮抗效应研究(批准号:314011202015-201824万元)

中国科学院青年创新促进会会员资助:(编号:20162522016-202080万元)

赛诺菲—中国科学院上海生命科学研究院优秀青年人才奖励基金(2017

国家自然科学基金重大研究计划: 整合多组学数据的乳腺癌肿瘤微环境解析算法研究(批准号:919591062020-202280万元)

上海市教委人工智能促进科研范式改革赋能学科跃升计划:基于深度学习的非编码RNA肿瘤靶向药物敏感性预测模型研究(批准号:24RGZNC022024-2025, 20万元)

代表性论文

Shaoying Zhu, Hui Yang Jun Liu, Qingsheng Fu, Wei Huang, Qi Chen, Andrew E. Teschendorff, Yungang He, Zhen Yang*, An improved reference library and method for accurate cell-type deconvolution of bulk-tissue miRNA data. Nature Communications (Accepted)

Zhen Yang#*, Xiaocen Liu#, Hao Xu#, Andrew E Teschendorff, Lingjie Xu, Jingyi Li, Minjie Fu, Jun Liu, Hanyu Zhou, Yingying Wang, Licheng Zhang, Yungang He, Kun Lv*, Hui Yang*. Integrative analysis of genomic and epigenomic regulation reveals miRNA mediated tumor heterogeneity and immune evasion in lower grade glioma. Communications Biology. 2024 Jul 6;7(1):824.

Zhen Yang*, Feng Xu, Andrew E. Teschendorff, Yi Zhao, Lei Yao, Jian Li, Yungang He. Insights into the role of long non-coding RNAs in DNA methylation mediated transcriptional regulation. Frontiers in Molecular Biosciences, 2022, 9: 1067406

Feng Xu, Yifan Wang, Yunchao Ling, Chenfen Zhou, Haizhou Wang, Andrew E Teschendorff, Yi Zhao, Haitao Zhao, Yungang He*, Guoqing Zhang*, Zhen Yang*. dbDEMC 3.0: Functional exploration of differentially expressed miRNAs in cancers of human and model organisms. Genomics Proteomics Bioinformatics. 2022 May 25;S1672-0229(22)00068-7.

Zhen Yang, Feng Xu, Aijuan Xue, Hong Lv, Yungang He*. Degree of Freedom of Gene Expression in Saccharomyces cerevisiae. Microbiology Spectrum. 2022 Apr 27;10(2):e0083821.

Zhen Yang, Feng Xu, Hongdou Li, Yungang He*. Beyond samples: A metric revealing more connections of gut microbiota between individuals. Computational and Structural Biotechnology Journal. 2021 Jul 10;19:3930-3937.

Zhen Yang*, Feng Xu, Haizhou Wang, Andrew E Teschendorff, Feng Xie, Yungang He*. Pan-cancer characterization of long non-coding RNA and DNA methylation mediated transcriptional dysregulation. EBioMedicine. 2021 Jun;68:103399.

Xue Bai#, Xiaobo Yang#, Liangcai Wu#, Bangyou Zuo, Jianzhen Lin, Shanshan Wang, Jin Bian, Xinting Sang, Yungang He, Zhen Yang*, Haitao Zhao*. CMTTdb: the cancer molecular targeted therapy database. Annals of Translational Medicine, 2019 Nov;7(22):667.

Zhenyu Bao#, Zhen Yang#, Zhou Huang, Yiran Zhou, Qinghua Cui*, Dong Dong*. LncRNADisease 2.0: an updated database of long non-coding RNA-associated diseases. Nucleic Acids Research. 2019 Jan 8;47(D1):D1034-D1037.

Zhen Yang#, Liangcai Wu#, Anqiang Wang#, Wei Tang, Yi Zhao, Haitao Zhao*, Andrew E. Teschendorff*. dbDEMC 2.0: updated database of differentially expressed miRNAs in human cancers. Nucleic Acids Research. 2017 Jan 4;45(D1):D812-D818.

Zhen Yang, Andrew Wong, Diana Kuh, Dirk S. Paul, Vardhman K. Rakyan, R. David Leslie, Shijie C. Zheng, Martin Widschwendter, Stephan Beck, Andrew E. Teschendorff*. Correlation of an epigenetic mitotic clock with cancer risk. Genome Biology. 2016 Oct 3;17(1):205.

Zhen Yang, Allison Jones, Martin Widschwendter, Andrew E. Teschendorff*. An integrative pan-cancer-wide analysis of epigenetic enzymes reveals universal patterns of epigenomic deregulation in cancer. Genome Biology. 2015 Jul 14;16:140.

Andrew Teschendorff#, Zhen Yang#, Andrew Wong, Christodoulos P Pipinikas, Yinming Jiao, Allison Jones, Shahzia Anjum, Rebecca Hardy, Helga B Salvesen, Christina Thirlwell, Samuel M Janes, Diana Kuh, Martin Widschwendter*. Correlation of Smoking-Associated DNA Methylation Changes in Buccal Cells With DNA Methylation Changes in Epithelial Cancer. JAMA Oncology. 2015 Jul;1(4):476-85.





1988年获北京大学遗传学学士;1991年毕获中国科学院发育生物学研究所发育生物学硕士;1997年获美国康涅狄格大学细胞生物学博士;1997至1999年在美国康涅狄格大学计算机科学与工程系从事博士后研究。曾任美国伊利诺伊大学(University of Illinois at Urbana-Champaign)生物技术中心生物信息学实验室主任(Director of Bioinformatics)、美国伊利诺伊大学动物学系助理教授、美国伊利诺伊大学国家超级计算中心(National Center for Supercomputing Application, NCSA)研究员(Faculty Fellow)。回国后,曾任中国科学院上海生命科学院“百人计划”研究员、复旦大学(附属)上海市公共卫生临床中心转化医学部主任、上海生物信息技术研究中心副主任、复旦大学大数据研究院医学信息与医学影像智能诊断研究所所长等职。

现任复旦大学智能医学研究院(筹)常务副院长,国际健康科学信息学研究院(IAHSI)院士,中国研究型医院学会临床数据与样本资源库专业委员会副主任委员、中国研究型医院学会临床数据与样本资源库专业委员会副主任委员、中华医学会医学信息分会常务委员等。

Email:liulei@fudan.edu.cn


现在承担和参与的课题

主持

1.上海市“地高建”项目,复旦大学上海医学院医学科研数据中心,项目编号:DGF501010;年度:2020-持续,项目负责人,经费:2879万

2.国家重点研发计划“精准医学研究”重点专项“疾病研究精准医学知识库构建”项目,项目编号:2016YFC09011900;年度:2016-2020,项目首席,经费:4632万。

参与:

1.国家自然科学基金重大研究计划“大数据驱动的管理与决策研究”2018年度集成项目“真实世界大数据驱动的全景式健康医疗管理和服务模式研究”,项目编号91846302;年度:2019-2022,参与,经费:700万

2.上海市经信委软件和集成电路产业发展专项资金项目“基于认知计算的智能医疗云服务研发及产业化应用”项目,年度:2017-2020,参与,经费:150万。

已结题课题:

主持

1.国家863数字医疗项目“医学知识库与临床决策支持系统”课题,课题编号:2012AA02A602;课题年度:2012-2015;总经费:1295万;承担任务:课题负责人

2.上海市“浦江人才计划”项目,“针对个性化医疗的信息整合数据库”,2008~2010,项目主持人,20万元,(项目编号:08PJ14084)

3.国家人保部留学回国人员科技活动择优资助重点项目,2008~2009“microRNA调控网络研究”,项目主持人,10万元

4.国家高技术研究发展计划(863计划)目标导向类项目,“建立基于临床医疗信息共享平台的医疗决策支持系统”,2006~2008,项目主持人,480万元,(项目编号:2006AA02Z344)


发表论文

Journal Articles:

1. Li, F., Zhou, L., Wang, Y., Chen, C., Yang, S., Shan, F., &Liu, L. (2022). Modeling long-range dependencies for weakly supervised disease classification and localization on chest X-ray. Quant Imaging Med Surg 2022;12(6):3364-3378.

2. Sun, X., Xu, H, Liu, G.,Chen, J., Xu, J., Li, M., Liu, L. (2022). A Robust Immuno-Prognostic Model of Non-Muscle-Invasive Bladder Cancer Indicates Dynamic Interaction in Tumor Immune Microenvironment Contributes to Cancer Progression. Front Genet. 2022 Jun 3; 13:833989.

3. Zhu, C., Yang, Z., Xia, X., Li, N., Zhong, F., & Liu, L. (2022). Multimodal reasoning based on knowledge graph embedding for specific diseases. Bioinformatics, 38(8), 2235-2245.

4. Zhang R, Liu Z, Chang X, Gao Y, Han H, Liu X, Cai H, Fu Q, Liu L, Yin K. (2022). Clinical significance of chromosomal integrity in gastric cancers.. Int J Biol Markers, Jun 19.

5. Liu, Y., Fu, Q., Peng, X., Zhu, C., Liu, G., & Liu, L. (2021). Attention-Based Deep Multiple-Instance Learning for Classifying Circular RNA and Other Long Non-Coding RNA. Genes, 12(12), 2018. https://doi.org/10.3390/genes12122018

6. Liu, G., Liu, Z., Sun, X., Xia, X., Liu, Y., & Liu, L. (2021). Pan-Cancer Genome-Wide DNA Methylation Analyses Revealed That Hypermethylation Influences 3D Architecture and Gene Expression Dysregulation in HOXA Locus During Carcinogenesis of Cancers. Frontiers in cell and developmental biology, https://doi.org/10.3389/fcell.2021.649168

7. Shi, L., Shi, W., Peng, X., Zhan, Y., Zhou, L., Wang, Y., Feng, M., Zhao, J., Shan, F., & Liu, L. (2021). Development and Validation a Nomogram Incorporating CT Radiomics Signatures and Radiological Features for Differentiating Invasive Adenocarcinoma From Adenocarcinoma In Situ and Minimally Invasive Adenocarcinoma Presenting as Ground-Glass Nodules Measuring 5-10mm in Diameter. Frontiers in oncology, 11, 618677. https://doi.org/10.3389/fonc.2021.618677

8. Wang, Y. , Wang, K. , Peng, X. , Shi, L. , & Liu, L. . (2021). Deepsdm: boundary-aware pneumothorax segmentation in chest x-ray images. Neurocomputing, 454(3)

9. Liu, X., Wu, A., Wang, X., Liu, Y., Xu, Y., Liu, G., & Liu, L. (2021). Identification of metabolism-associated molecular subtype in ovarian cancer. Journal of cellular and molecular medicine, 25(20), 9617–9626. https://doi.org/10.1111/jcmm.16907

10. Peng, X., Yang, S., Zhou, L., Mei, Y., Shi, L., Zhang, R., Shan, F., & Liu, L. (2021). Repeatability and Reproducibility of Computed Tomography Radiomics for Pulmonary Nodules: A Multicenter Phantom Study. Investigative radiology, 10.1097/RLI.0000000000000834. Advance online publication. https://doi.org/10.1097/RLI.0000000000000834

11. Shi, L., Zhao, J., Peng, X., Wang, Y., Liu, L., & Sheng, M. (2021). CT-based radiomics for differentiating invasive adenocarcinomas from indolent lung adenocarcinomas appearing as ground-glass nodules: Asystematic review. European journal of radiology, 144, 109956. https://doi.org/10.1016/j.ejrad.2021.109956

12. Xu, W., Guo, W., Lu, P., Ma, D., Liu, L., & Yu, F. (2021). Identification of an autophagy-related gene signature predicting overall survival for hepatocellular carcinoma. Bioscience reports, 41(1), BSR20203231. https://doi.org/10.1042/BSR20203231

13. Xu, W., Chen, Z., Liu, G., Dai, Y., Xu, X., Ma, D., & Liu, L. (2021). Identification of a Potential PPAR-Related Multigene Signature Predicting Prognosis of Patients with Hepatocellular Carcinoma. PPAR research, 2021, 6642939. https://doi.org/10.1155/2021/6642939

14. Gang Liu#, Wenhui Xie#, Mingming Jin#, Ping Li, Liu Liu, Lei Liu$, Gang Huang$. Transcriptomic analysis reveals a WNT signaling pathway-based gene signature prognostic for non-small cell carcinoma. Aging (Albany NY). 2020 Oct 7;12(19):19159-19172. doi: 10.18632/aging.103724.

15. Liu X, Liu G, Chen L, Liu F, Zhang X, Liu D, Liu X, Cheng X, Liu L. Untargeted Metabolomic Characterization of Ovarian Tumors. Cancers (Basel). 2020 Dec 4;12(12):3642. doi: 10.3390/cancers12123642. https://pubmed.ncbi.nlm.nih.gov/33291756/

16. Cui, D., Liu, Y., Liu, G., and Liu, L. (2020). A Multiple-Instance Learning-Based Convolutional Neural Network Model to Detect the IDH1 Mutation in the Histopathology Images of Glioma Tissues. Journal of computational biology : a journal of computational molecular cell biology.

17. Liu, Y., Dou, Y., Lu, F., and Liu, L. (2020). A study of radiomics parameters from dual-energy computed tomography images for lymph node metastasis evaluation in colorectal mucinous adenocarcinoma. Medicine 99, e19251.

18. Ren, H., Zhou, L., Liu, G., Peng, X., Shi, W., Xu, H., Shan, F., and Liu, L. (2020). An unsupervised semi-automated pulmonary nodule segmentation method based on enhanced region growing. Quantitative Imaging in Medicine and Surgery 10, 233-+.

19. Xu, W.F., Liu, Z.H., Ren, H., Peng, X.Q., Wu, A.S., Ma, D., Liu, G., and Liu, L. (2020). Twenty Metabolic Genes Based Signature Predicts Survival of Glioma Patients. J Cancer 11, 441-449.

20. Chen, L., Liu, X., Li, M., Wang, S., and Cheng, X. (2020). A novel model to predict cancer﹕pecific survival in patients with early﹕tage uterine papillary serous carcinoma (UPSC).Cancer Med. 2020 Feb;9(3):988-998.Book Chapters:

1988年获北京大学遗传学学士;1991年毕获中国科学院发育生物学研究所发育生物学硕士;1997年获美国康涅狄格大学细胞生物学博士;1997至1999年在美国康涅狄格大学计算机科学与工程系从事博士后研究。曾任美国伊利诺伊大学(University of Illinois at Urbana-Champaign)生物技术中心生物信息学实验室主任(Director of Bioinformatics)、美国伊利诺伊大学动物学系助理教授、美国伊利诺伊大学国家超级计算中心(National Center for Supercomputing Application, NCSA)研究员(Faculty Fellow)。回国后,曾任中国科学院上海生命科学院“百人计划”研究员、复旦大学(附属)上海市公共卫生临床中心转化医学部主任、上海生物信息技术研究中心副主任、复旦大学大数据研究院医学信息与医学影像智能诊断研究所所长等职。

现任复旦大学智能医学研究院(筹)常务副院长,国际健康科学信息学研究院(IAHSI)院士,中国研究型医院学会临床数据与样本资源库专业委员会副主任委员、中国研究型医院学会临床数据与样本资源库专业委员会副主任委员、中华医学会医学信息分会常务委员等。

Email:liulei@fudan.edu.cn


现在承担和参与的课题

主持

1.上海市“地高建”项目,复旦大学上海医学院医学科研数据中心,项目编号:DGF501010;年度:2020-持续,项目负责人,经费:2879万

2.国家重点研发计划“精准医学研究”重点专项“疾病研究精准医学知识库构建”项目,项目编号:2016YFC09011900;年度:2016-2020,项目首席,经费:4632万。

参与:

1.国家自然科学基金重大研究计划“大数据驱动的管理与决策研究”2018年度集成项目“真实世界大数据驱动的全景式健康医疗管理和服务模式研究”,项目编号91846302;年度:2019-2022,参与,经费:700万

2.上海市经信委软件和集成电路产业发展专项资金项目“基于认知计算的智能医疗云服务研发及产业化应用”项目,年度:2017-2020,参与,经费:150万。

已结题课题:

主持

1.国家863数字医疗项目“医学知识库与临床决策支持系统”课题,课题编号:2012AA02A602;课题年度:2012-2015;总经费:1295万;承担任务:课题负责人

2.上海市“浦江人才计划”项目,“针对个性化医疗的信息整合数据库”,2008~2010,项目主持人,20万元,(项目编号:08PJ14084)

3.国家人保部留学回国人员科技活动择优资助重点项目,2008~2009“microRNA调控网络研究”,项目主持人,10万元

4.国家高技术研究发展计划(863计划)目标导向类项目,“建立基于临床医疗信息共享平台的医疗决策支持系统”,2006~2008,项目主持人,480万元,(项目编号:2006AA02Z344)


发表论文

Journal Articles:

1. Li, F., Zhou, L., Wang, Y., Chen, C., Yang, S., Shan, F., &Liu, L. (2022). Modeling long-range dependencies for weakly supervised disease classification and localization on chest X-ray. Quant Imaging Med Surg 2022;12(6):3364-3378.

2. Sun, X., Xu, H, Liu, G.,Chen, J., Xu, J., Li, M., Liu, L. (2022). A Robust Immuno-Prognostic Model of Non-Muscle-Invasive Bladder Cancer Indicates Dynamic Interaction in Tumor Immune Microenvironment Contributes to Cancer Progression. Front Genet. 2022 Jun 3; 13:833989.

3. Zhu, C., Yang, Z., Xia, X., Li, N., Zhong, F., & Liu, L. (2022). Multimodal reasoning based on knowledge graph embedding for specific diseases. Bioinformatics, 38(8), 2235-2245.

4. Zhang R, Liu Z, Chang X, Gao Y, Han H, Liu X, Cai H, Fu Q, Liu L, Yin K. (2022). Clinical significance of chromosomal integrity in gastric cancers.. Int J Biol Markers, Jun 19.

5. Liu, Y., Fu, Q., Peng, X., Zhu, C., Liu, G., & Liu, L. (2021). Attention-Based Deep Multiple-Instance Learning for Classifying Circular RNA and Other Long Non-Coding RNA. Genes, 12(12), 2018. https://doi.org/10.3390/genes12122018

6. Liu, G., Liu, Z., Sun, X., Xia, X., Liu, Y., & Liu, L. (2021). Pan-Cancer Genome-Wide DNA Methylation Analyses Revealed That Hypermethylation Influences 3D Architecture and Gene Expression Dysregulation in HOXA Locus During Carcinogenesis of Cancers. Frontiers in cell and developmental biology, https://doi.org/10.3389/fcell.2021.649168

7. Shi, L., Shi, W., Peng, X., Zhan, Y., Zhou, L., Wang, Y., Feng, M., Zhao, J., Shan, F., & Liu, L. (2021). Development and Validation a Nomogram Incorporating CT Radiomics Signatures and Radiological Features for Differentiating Invasive Adenocarcinoma From Adenocarcinoma In Situ and Minimally Invasive Adenocarcinoma Presenting as Ground-Glass Nodules Measuring 5-10mm in Diameter. Frontiers in oncology, 11, 618677. https://doi.org/10.3389/fonc.2021.618677

8. Wang, Y. , Wang, K. , Peng, X. , Shi, L. , & Liu, L. . (2021). Deepsdm: boundary-aware pneumothorax segmentation in chest x-ray images. Neurocomputing, 454(3)

9. Liu, X., Wu, A., Wang, X., Liu, Y., Xu, Y., Liu, G., & Liu, L. (2021). Identification of metabolism-associated molecular subtype in ovarian cancer. Journal of cellular and molecular medicine, 25(20), 9617–9626. https://doi.org/10.1111/jcmm.16907

10. Peng, X., Yang, S., Zhou, L., Mei, Y., Shi, L., Zhang, R., Shan, F., & Liu, L. (2021). Repeatability and Reproducibility of Computed Tomography Radiomics for Pulmonary Nodules: A Multicenter Phantom Study. Investigative radiology, 10.1097/RLI.0000000000000834. Advance online publication. https://doi.org/10.1097/RLI.0000000000000834

11. Shi, L., Zhao, J., Peng, X., Wang, Y., Liu, L., & Sheng, M. (2021). CT-based radiomics for differentiating invasive adenocarcinomas from indolent lung adenocarcinomas appearing as ground-glass nodules: Asystematic review. European journal of radiology, 144, 109956. https://doi.org/10.1016/j.ejrad.2021.109956

12. Xu, W., Guo, W., Lu, P., Ma, D., Liu, L., & Yu, F. (2021). Identification of an autophagy-related gene signature predicting overall survival for hepatocellular carcinoma. Bioscience reports, 41(1), BSR20203231. https://doi.org/10.1042/BSR20203231

13. Xu, W., Chen, Z., Liu, G., Dai, Y., Xu, X., Ma, D., & Liu, L. (2021). Identification of a Potential PPAR-Related Multigene Signature Predicting Prognosis of Patients with Hepatocellular Carcinoma. PPAR research, 2021, 6642939. https://doi.org/10.1155/2021/6642939

14. Gang Liu#, Wenhui Xie#, Mingming Jin#, Ping Li, Liu Liu, Lei Liu$, Gang Huang$. Transcriptomic analysis reveals a WNT signaling pathway-based gene signature prognostic for non-small cell carcinoma. Aging (Albany NY). 2020 Oct 7;12(19):19159-19172. doi: 10.18632/aging.103724.

15. Liu X, Liu G, Chen L, Liu F, Zhang X, Liu D, Liu X, Cheng X, Liu L. Untargeted Metabolomic Characterization of Ovarian Tumors. Cancers (Basel). 2020 Dec 4;12(12):3642. doi: 10.3390/cancers12123642. https://pubmed.ncbi.nlm.nih.gov/33291756/

16. Cui, D., Liu, Y., Liu, G., and Liu, L. (2020). A Multiple-Instance Learning-Based Convolutional Neural Network Model to Detect the IDH1 Mutation in the Histopathology Images of Glioma Tissues. Journal of computational biology : a journal of computational molecular cell biology.

17. Liu, Y., Dou, Y., Lu, F., and Liu, L. (2020). A study of radiomics parameters from dual-energy computed tomography images for lymph node metastasis evaluation in colorectal mucinous adenocarcinoma. Medicine 99, e19251.

18. Ren, H., Zhou, L., Liu, G., Peng, X., Shi, W., Xu, H., Shan, F., and Liu, L. (2020). An unsupervised semi-automated pulmonary nodule segmentation method based on enhanced region growing. Quantitative Imaging in Medicine and Surgery 10, 233-+.

19. Xu, W.F., Liu, Z.H., Ren, H., Peng, X.Q., Wu, A.S., Ma, D., Liu, G., and Liu, L. (2020). Twenty Metabolic Genes Based Signature Predicts Survival of Glioma Patients. J Cancer 11, 441-449.

20. Chen, L., Liu, X., Li, M., Wang, S., and Cheng, X. (2020). A novel model to predict cancer﹕pecific survival in patients with early﹕tage uterine papillary serous carcinoma (UPSC).Cancer Med. 2020 Feb;9(3):988-998.Book Chapters: